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Abstract—A molecular communication channel is determined
by the received signal, which forms the basis for studies that are
focusing on modulation, receiver design, capacity, and coding.
Therefore, it is crucial to model the number of received molecules
until time t. Received signal is modeled analytically when the
transmitter is a point and the receiver is an absorbing sphere.
Modeling the diffusion-based molecular communication channel
with the first-hitting process (i.e., with an absorbing receiver) is
an open issue when the transmitter is a reflecting spherical body.
In this paper, we utilize the artificial neural networks technique
to model the received signal for a spherical transmitter and
a perfectly absorbing receiver (i.e., first-hitting process). The
proposed technique may be utilized in other studies that assume
a spherical transmitter instead of a point transmitter.

I. INTRODUCTION

Nanotechnology is a promising technology that has nu-

merous potential applications [1], [2]. One of its innova-

tive approaches is to utilize collaborative behavior amongst

small entities. To enable the revolutionary possibilities of

nanotechnology, it is important to possess the capacity to

communication at the nano- and micro-scale [3]. As a possible

means to communicate at such a small scale, researchers have

proposed molecular communication via diffusion (MCvD) [4].

In an MCvD system, molecules (emitted by a transmitter)

propagate through the environment until they arrive at the

receiver node, which constitute the received signal.

One of the main challenges in molecular communication

(MC) is to develop valid models for representing the received

signal in different environments and conditions. Some of

the MCvD models in the literature, assume that whenever

a molecule hits the receiver it is removed from the envi-

ronment [5]–[7]. This phenomenon is modeled by the first-

passage process. In this model, each molecule can contribute

to the received signal only once. In [5], the authors presented

the analytical model for the received signal in a 1-dimensional

(1D) environment while considering the first-passage process.

In [7], the authors presented the expected cumulative num-

ber of received molecules when the transmitter is a point

source and the receiver is an absorbing spherical node in

a 3D medium. In [8], the authors analytically modeled the

received signal and derived the expected cumulative number

of received molecules when the receptor effect was added to

the system presented in [7].

On the other hand, some of the MCvD models ignore the

first-passage process, allowing molecules to pass through the

receiver node surface/boundary with no interaction between

the environment and the receiver [9]–[11]. In such models,

the molecules are allowed to contribute to the signal multiple

times, as they can pass in and out of the receiver node surface

multiple times. In [11], the authors considered such a spherical

transmitter that does not reflect the molecules, only the initial

emission points are selected randomly at the transmitter and

molecules can pass through the transmitter node surface with

no interaction. The main difference between our work and

[11] is the reflection property of the transmitter node in

our study, i.e., molecules cannot pass through the transmitter

node’s boundary after they are emitted.

Both of the MCvD physical layer models are summarized

and presented in [3]. In [12], it is claimed that the first-

passage process is observed in nature more frequently than

the passive receiver process. The absorbing spherical receiver

model with a reflecting spherical transmitter is similar to

the MC systems in nature [12]. Both channel models (i.e.,

the received signal for the first-passage process and passive

receiver) have a common hurdle for the communication engi-

neering: heavy tail distribution of the received signal, which

causes inter-symbol-interference (ISI). In literature, plenty of

techniques are proposed to eliminate the severe effects of

ISI by utilizing specialized modulations [13], error correcting

codes [14]–[16], and enzymes [17], [18]. In these studies,

analytical models are used for the derivations, which indicates

the importance of modeling the received signal in different

environments.

Modeling the MCvD channel with the first-passage pro-

cess is an open issue for a spherical transmitter that emits

molecules from a single point and reflects the emitted

molecules as in the case of hormonal secration in the synapses

and pacreatic β-cell islets [17]. In general, emitter cells do

not have receptors of emitted molecules at the emission

site, otherwise the transmitter would directly absorb the

self emitted molecules. To the best of our knowledge, an

analytical formulation does not exist in the literature for the

spherical perfectly absorbing receiver when the transmitter

is a reflecting spherical body. In this paper, we propose

a machine learning based approach to model the diffusion

channel for a more realistic topology [19]. The proposed

model function is inspired by our previous work in [7], while

it has additional model parameters that act as compensation

parameters. Moreover, we show that these model parameters

can be learned by an artificial neural network (ANN) and the

trained ANN can estimate the model parameters by using only
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Fig. 1. System model of MCvD with point and spherical transmitter cases. In
the point transmitter case, molecules are free to go in the opposite direction.

the given system parameters as input.

II. SYSTEM MODEL

We consider an MCvD system with one transmitter and

receiver pair in a fluid environment. Fig. 1 shows two different

cases for MCvD–point and spherical transmitters. In general,

the point transmitter case is studied in the literature [7],

[8], [10]. The point transmitter assumption is reasonable

for some applications. However the transmitter node has a

body in general and the transmitter does not react to the

molecules from itself [12]. In this paper, we model the MCvD

channel with a perfectly absorbing receiver without the point

transmitter assumption.

As shown in Fig. 1, emitted molecules diffuse in the

3D environment, which is characterized by the diffusion

coefficient D. At the receiver side, the radius of the receiver

is denoted by rRx and the received signal consists of the

time histogram of hitting molecules. When we have a point

transmitter, molecules are able to travel in the opposite direc-

tion of the receiver more freely. In the spherical transmitter

case, however, molecules are obstructed and reflected by the

transmitter of radius rTx. Hence, the received signals of these

two cases are expected to differ.

A. MCvD with a Point Transmitter

The received signal is modeled analytically for the point

transmitter and the spherical perfectly absorbing receiver

case. The diffusion process basically models the average

movement of particles in the concentration gradient. In [7],

the solution to the differential equation system that defines

the system is presented and analyzed from the perspective

of channel characteristics. After finding the reaction rate, the

formula for the fraction of molecules that hit the receiver by

the time t is presented as follows:

F3D
hit (t) =

rRx

d+rRx
erfc

(

d
√

4Dt

)

(1)

where d and erfc(.) represent the distance and complementary

error function. For the spherical transmitter case, it is more

complex to derive the formulation of the number of received

molecules due to the lack of circular symmetry.
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Fig. 2. Flowchart of the proposed technique. Phase 1 deals with fitting model
parameters by utilizing the simulator output. Phase 2 deals with training the
ANN on the training dataset that is obtained from Phase 1. Dataset from
Phase 1 consists of input-output pairs where input is (d, rTx, rRx, D) and
the output consists of the model parameters (i.e., bi ’s).

B. MCvD with a Spherical Transmitter

Modeling the received signal analytically for a spherical

transmitter is an open issue when the receiver is a perfectly

absorbing spherical receiver in a 3D environment. The main

difference and hurdle stem from the lack of circular symmetry

in differential equations system. For the spherical transmitter

case, molecules are biased towards going in the direction of

the receiver due to the obstructing body of the transmitter

node. Therefore, each of the molecules is expected to have a

higher probability of hitting the receiver.

Hurdles caused by a spherical transmitter steered us to

simulate the MCvD with a spherical transmitter and to analyze

the patterns so as to grasp the underlying dynamics. We ran

extensive simulations with many parameters. The cumulative

number of received molecules exhibits a similar behavior

to the point transmitter case with a small perturbation that

depends on the system parameters.

III. PROPOSED TECHNIQUE FOR CHANNEL MODELING

As noted above, the main challenge in MCvD is to develop

valid models for representing the received signal in different

environments and conditions. When the transmitter has a

spherical body, we propose to model the received signal by

parameterizing (1) and learning the patterns behind the model

parameters. For the fitting phase, we use a similar approach

to [20] by introducing compensation parameters.

The proposed technique has two main phases: fitting the

model parameters constitutes phase one (i.e., forming the

input-output dataset for phase two) and learning the patterns

in the input-output dataset constitutes phase two. After the

learning phase, the output of the algorithm is a trained

ANN for future predictions on unexplored input (i.e., other

combinations of system parameters that are not considered

during the training phase). A representative scheme of the

proposed technique is depicted in Fig. 2.

A. Model Function and Fitting

We propose two different model functions for fitting the

simulation data and name them as the primitive model and



enhanced model. We use only a scaling factor for the primitive

model, which is represented as follows:

F3D
hit (t, b1) = b1

rRx

d+rRx
erfc

(

d
√

4Dt

)

(2)

where b1 represents the model fitting parameter. For the

enhanced model, we also parametrize the components related

to D and t, which is shown as follows:

F3D
hit (t, b1, b2, b3) = b1

rRx

d+rRx
erfc

(

d

(4D)b2 tb3

)

(3)

where b1, b2, and b3 are model fitting parameters. These

model fitting parameters are introduced for fitting simulation

data to model functions. When the transmitter is a reflecting

sphere we expect more molecules at the receiver and earlier

arrivals of molecules. Therefore, we add scaling and time

related model fitting parameters.

To find the model parameters corresponding to the sys-

tem parameters, we use nonlinear least squares curve fitting

technique. We considering N time instances to formulate

the fitting model parameters problem with m parameters as

follows:

arg min
b1,...,bm

N
∑

k=1

(

F3D
hit (tk, b1, ..., bm) − S3D

hit (tk )
)2

(4)

where S3D
hit

(t) corresponds to the mean simulation data that is

representing the ratio of hitting molecules until time t, which

is evaluated over simulation realizations.

The output of the curve fitting process consists of the model

parameters (i.e., b1 for primitive model and b1 ∼ b3 for the

enhanced model). Hence, we obtain model parameters for

each simulation case, which forms the dataset of the next

phase. This dataset structure is depicted in Fig. 2, which

contains the system parameters and bi’s from curve fitting.

B. Learning Model Parameters

In this paper, we utilize a machine-learning technique

to model the received signal in MCvD with a spherical

transmitter. One of the popular machine-learning techniques is

artificial neural networks. They have simple neuron-like nodes

with thresholds and connections with weights. Basically, the

thresholds and the weights are adjusted until the desired

output is observed for the given inputs.

The dataset from the curve fitting phase is divided into

two disjointed subsets as training and validation datasets.

Training data is utilized for training the ANN for getting

the desired output for given inputs. Bayesian regularization

backpropagation technique is used for the ANN training that

updates the weights and bias values according to Levenberg-

Marquardt optimization. Bayesian regularization minimizes a

combination of squared errors and weights of the ANN to

determine the ANN parameters that generalize the pattern in

the input-output pairs. We utilize the trained ANN1 to estimate

1The trained ANN and the data can be downloaded from Matlab fileex-
change (public domain) http://tinyurl.com/ANN-for-S2S-MCvD

TABLE I
RANGE OF PARAMETERS USED IN THE EXPERIMENTS

Parameter Value

Number of emitted molecules 3 000

Simulation duration (tend) 1 s

Simulation time step 5 × 10−5 s

Replication 500

TDS Distances (d) {2, 4, 6, 8, 10} µm

VDS Distances (d) {3, 5, 7, 9, 11} µm

TDS Transmitter radii (rTx) {5, 7.5, 10} µm

VDS Transmitter radii (rTx) {4, 6, 8} µm

TDS Diffusion coefficients (D) {50, 75, 100}µm2/s

VDS Diffusion coefficients (D) {60, 70, 80}µm2/s

TDS Receiver radii (rRx) {5, 7.5, 10} µm

VDS Receiver radii (rRx) {4, 6, 8} µm

the channel parameters for different cases. Note that the curve-

fitting technique requires simulation data for training the ANN

but the trained ANN does not require any simulation data,

i.e., required inputs are the system parameters such as d,

rTx, D, and rRx. After training the ANN we do not need

any simulations for obtaining the channel model function

parameters; we will be able to get the channel model function

parameters for unknown cases by utilizing the trained ANN.

Simulation and fitting are used to produce the training dataset

(TDS) for training the ANN. Details of the dataset will be

given in the following section.

IV. RESULTS AND ANALYSIS

A. Performance Metrics and Parameters

For the performance metrics, we use root mean squared

error (RMSE) with respect to simulation data in terms of num-

ber of received molecules to get insight about the performance

of the ANN technique. First, we give the received signal

and signal-to-inter-symbol-interference ratio (SISIR) plots for

the example cases. We then present the average RMSE over

different cases.

Common system parameters for simulation, training (TDS),

and validation (VDS) datasets are presented in Table I.

From the given datasets, each of the VDS and TDS have

5 × 3 × 3 × 3=135 different cases, making a total of 270

cases. Each simulation case is replicated 500 times to estimate

the mean received signal at the receiver side (i.e., F3D
hit

(t)).

What is of prime interest for modeling an MCvD channel is

to model, as noted above, the received signal (i.e., the number

of hitting molecules until time t). To model the received

signal, we utilize curve-fitting and artificial neural network

techniques. In the performance figures, we cannot present all

135 cases, but we offer some example scenarios and average

RMSE plots.

B. Received Signal Analysis

In Fig. 3, the received signal is plotted for simulation

data, curve-fitting, and ANN techniques. Note that the ANN

technique requires no simulation data, while the curve-fitting

method does. After training an ANN, we estimated channel
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Fig. 3. Received signal plots for rTx
=4 µm, rRx

=8 µm, D=80 µm2/s, and
d= {5, 9} µm with time resolution of 1 ms.

model parameters for the validation data by giving only the

system parameters as input. For the primitive model that is

given in (2), a single channel model parameter was estimated.

On the other hand, for the enhanced model that is given in (3),

three channel model parameters were estimated.

It can be clearly seen that the enhanced model fits the

simulation data better than does the primitive model. At the

peak and the tail part of the received signal, we observe

that the enhanced model outperforms the primitive model and

the point transmitter formulation given in (1). The second

observation suggests that, with increased distance, the esti-

mation performance of the received signal is improved. This

observation will also be supported by SISIR and RMSE plots

in Figs. 4 and 5. The diminishing effect of spherical trans-

mitter may be the reason behind this observation. Another

observation is that the trained ANNs generalize the fitted

model parameters well.

C. SISIR Analysis

Interference is the primary impairment in MC due to

the heavy tail structure of the received signal [17]. Hence,

modeling the inter-symbol-interference (ISI) is at a crucial

importance and in literature finite number of ISI slots are

considered. Therefore, we also analyze SISIR metric (with a

sufficiently large tend that depends on the system parameters),

which is formulated as:

SISI R(t) =
F3D

hit
(t)

F3D
hit

(tend) − F3D
hit

(t)
(5)

where we can also substitute F3D
hit

(t) with the channel model

functions given in (2) and (3). This metric basically represents
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Fig. 4. SISIR plots for r
Tx
= 4 µm, r

Rx
= 8 µm, D = 80 µm2/s, and

d= {5, 9} µm with time resolution of 1 ms.

the ratio of the cumulative number of received molecules

until time t and the number of ISI molecules that could not

be received in the current symbol duration. SISIR plots are

important since they show the performance of modeling the

ratio of desired signal and ISI.

In Fig. 4, SISIR is plotted for the simulation data, curve-

fitting, and ANN techniques. The enhanced model estimates

the received signal better than the primitive model. Moreover,

the longer the distance the better the channel parameter

estimation performance. For d = 9 µm case, the enhanced

model is very close to the simulation data. However, the

primitive model with one scaling factor does not adequately

model the simulation data. Again, we see that the trained ANN

generalizes the fitting method well for both of the cases (i.e.,

fitting and ANN curves are overlapping for both models).

D. RMSE Analysis

To better understand the performance of the estimation

technique, we evaluated the mean RMSE of cases with respect

to (wrt) simulation data in terms of the number of received

molecules until time t. For RMSE analysis, we grouped results

with respect to distance and rRx so that each group is the

average of nine cases.

In Fig. 5, the RMSEs of the channel parameter estimation

methods are presented for ANNs with primitive and enhanced

models. The first observation from both subfigures suggests

that the estimation performance gets better with increasing

distance. Moreover, the RMSE of the enhanced model is

significantly lower than that of the primitive model. Note

that the ANN technique requires no simulation data, utilizing

only the system parameters as input to estimate the channel



Distance (7m)

3 5 7 9 11

A
v
g

. 
R

M
S

E

0

25

50

75

100

125

150

175 Primitive Model + ANN
r
Rx

= 4 7m

r
Rx

= 6 7m

r
Rx

= 8 7m

Distance (7m)

3 5 7 9 11

A
v
g

. 
R

M
S

E

0

25

50

75

100

125

150

175 Enhanced Model + ANN
r
Rx

= 4 7m

r
Rx

= 6 7m

r
Rx

= 8 7m

Fig. 5. Average RMSE plots of ANN estimation.

parameters. The primitive model scales the formulation of

point transmitter case and the larger rRx case deviates more

from the point transmitter case, as the probability rises of

receiving obstructed and reflected molecules. Therefore, for

the primitive model, performance of the estimation of the

received signal is better in terms of RMSE for smaller rRx.

V. CONCLUSION

In this work, we developed a novel technique to model the

received signal in MCvD with a spherical transmitter. In the

literature, a point transmitter is assumed for the tractability

of the mathematical derivations in a first-passage process

framework. Approaching the problem from a unique perspec-

tive, we utilized an artificial neural network technique and a

model function for the number of received molecules. After

training an ANN, we were able to ask the ANN to estimate

the channel model parameters for different system setups.

Our proposed technique has promising results for modeling

the number of received molecules until time t. We observed

that the proposed technique models the received signal and

SISIR more effectively for longer distances. The proposed

technique may be utilized to model an MCvD channel in other

studies that assumes a spherical transmitter instead of a point

transmitter.
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